

The Desaware Licensing System

Application Note #2:
Implementing Concurrent/Floating Licenses

Version 1 – February 2009

Copyright ©2009 Desaware Inc. All rights reserved.

'THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
'KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE 'IMPLIED
WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A'PARTICULAR PURPOSE.

Desaware Licensing System: Application Note: #2 Page 2
Implementing Concurrent/Floating Licenses

Introduction
The Desaware Licensing System (DLS) emphasizes flexibility and extensibility. It is designed to be an
infrastructure product that can be easily integrated into existing business systems.

One of the most frequent requests we receive is for concurrent or “floating” licensing – the ability for
software to be installed on many systems but only run on a limited number of those systems
simultaneously.

This application note contains a sample implementation of a floating license system built upon the
Desaware Licensing System infrastructure. We recommend you first read Application Note #1:
Extending the Licensing System. This implementation is built upon and compatible with the second
edition of that application note1.

The examples in this application note are provided in VB .NET. The examples are simple, and we
expect any .NET developer will be able to easily read them regardless of their own preferred language.

Sample Installation
Unzip the application note file into the directory of your choice. The samples consist of the following
directories:

• extensions – contains the project for the Desaware.extensions.dll project.

• server – contains a licensing server web application for testing.

• expirations – contains a web application and web service that demonstrate the examples in this
application note.

• HighSecurity – contains a modified version of the HighSecurity sample application that
demonstrates how to implement concurrent licensing.

• ConcurrencyServer – contains the concurrency “floating license” server.

• db – directory holding the licensing database and log files.

To configure the samples, do the following:

• Reset the security on the db database to give full access to the ASPNET or NETWORK
SERVICE accounts. Do the same for any files contained within this directory.

• In the server\bin directory, replace the DLS10Server.dlsc file with the one from your own
licensing server on the same system. If you have not installed the server on this system,
download the licensing server demo from Desaware.com, install it as a demo, then copy the
DLS10Server.dlsc file created during that installation into this directory. The certificate will
remain valid for one month.

• In the HighSecurity\bin directory, replace the DLS10Client.dlsc file with the one from your own
licensing system client on the same system. If you have not installed the client on this system,
download the licensing client demo from Desaware.com, install it as a demo, then copy the

1 Please download the latest version of Application Note #1: Extending the Licensing System. It was updated to version 2 to
make it compatible with this application note.

Desaware Licensing System: Application Note: #2 Page 3
Implementing Concurrent/Floating Licenses

DLS10Client.dlsc file created during that installation into this directory. The certificate will
remain valid for one month. On Vista this file might be found in the hidden ProgramData
directory.

• In the server\web.config file, set the following paths to the correct location on your system:

o In the <appSettings> section, look in the “connectionstring” key.

o In the <system.diagnostics> section, look under <listeners> and set the initializeData
property for the DlsWriterListener term.

• Make the same web.config changes to the expirations\web.config file.

• In your IIS administration panel, add a virtual directory to the directory in which you installed
the samples. Open the properties for the directory and make sure the ASP .NET tab is set to ASP
.NET 2.0.

• Using the IIS administration panel, navigate to the virtual directory you just created. Right click
on the expirations directory to view its properties, and select the“Create” button to turn the
directory into a separate web application. Repeat this step for the server directory, and for the
ConcurrencyServer directory.

• Assuming you name the virtual directory dlsappnote2, you should be able to access the license
server at http://localhost/dlsappnote2/server/management.asmx, the expiration utility at
http://localhost/dlsappnote2/expirations/dlsextdefault.aspx and the concurrency server at
http://localhost/dlsappnote2/concurrencyserver/licenser.asmx.

• Using your LicenseManager application, connect to the new server at
http://localhost/dlsappnote2/server/management.asmx. Select “Developer Information” in the left
panel and SaveInfoAsResX file on the right panel. Save the new resx file in the HighSecurity
directory. This will cause the application to refer to the correct server on your system when
testing this example.

You should now be able to run and build all of the examples using Visual Studio 2008.

Concurrent Licensing Server Design
Concurrent licensing is tricky. Doing it with any degree of security is even trickier. This section will
review the requirements and architecture of any concurrent licensing solution, and the specific
implementation of the DLS solution.

A Central Concurrency Server
In a floating license scheme, software is installed on multiple machines. Before running, the software
has to contain a mechanism to determine how many copies of the software are currently running. That
means there must be a way for software instances to communicate with each other.

Peer to peer solutions are theoretically possible, but extraordinarily complex, as you have to somehow
guarantee that every possible machine can reach every other machine all of the time. Any
communication failure could cause extra licenses to be granted.

A more reliable, secure and simple solution is to define a central license server that grants individual
machines permission to run and keeps track of how many clients are running at any given time.

http://localhost/dlsappnote2/server/management.asmx
http://localhost/dlsappnote2/expirations/dlsextdefault.aspx
http://localhost/dlsappnote2/concurrencyserver/licenser.asmx
http://localhost/dlsappnote2/server/management.asmx

Desaware Licensing System: Application Note: #2 Page 4
Implementing Concurrent/Floating Licenses

As part of the security implications of this approach it is necessary to consider the following:

• The server needs to ensure that client requests are valid.

• Clients must connect to the correct server.

• The server must be designed for high performance.

A Leasing System
In a floating licensing scenario, an application will typically contact the concurrency server and request
a “lease”. A lease is essentially permission to run. The concurrency server holds a certain number of
leases based on the number of licenses (applications allowed to run simultaneously). When an
application closes, it is expected to return the lease to the server so it will be available for other
applications.

As part of the leasing system, it is necessary to consider the following:

• It is possible for applications to crash or hang, in which case they might not return the lease to
the server. Thus leases must have an expiration time after which they are presumed returned.

• Because leases can expire, there needs to be a renewal mechanism so applications can let the
server know not to expire the lease.

• Because applications will be contacting the server to renew leases, the server must be optimized
for performance to handle the expected load.

Server Hosting and Communication
One key question is where the server is hosted.

One option would be to have a single centralized server on the same host as the licensing system server.
This would be a simple solution in that the central server could have direct access to the licensing
system database for verification purposes. However, this approach would preclude deployment of the
concurrency server to customer sites, and would impact scalability.

For this reason in our implementation the concurrency server is a completely independent piece of
software. Moreover, a separate concurrency server can be set for each installation code or group of
installation codes (necessary in cases where a server might be deployed at a customer site). Scalability is
easily achieved in that you can deploy as many servers as you need.

Because the concurrency server is an independent piece of software, all information it needs to operate
must come from the clients. This can be done securely under the DLS because each client has a license
certificate that has been digitally signed by the licensing server. This certificate contains all of the
information the concurrency server needs in order to handle a particular installation code.

The server checks the signature date of each certificate, updating its internal records based on the most
recent certificates.

The Concurrency Server Methods and Operation
The concurrency server is accessed via web service calls.

Desaware Licensing System: Application Note: #2 Page 5
Implementing Concurrent/Floating Licenses

AllocateLicense
Parameters:

• cert – string

• LicenseLifetime – Integer

• InstallCode – string (reference)

• UniqueCode – string (reference)

• Returns ConcurrencyResults enumeration

The AllocateLicense function is used by the client to request a lease. The cert parameter contains the full
XML certificate for the licensed client. The LicenseLifetime parameter contains the requested lease
lifetime (in seconds). The application must renew the lease before this time is reached.

The UniqueCode and InstallCode are reference parameters (the values are returned to the client). These
values are pulled from the certificate and are used by the client to renew the lease. The reason for using
these instead of resending the certificate is to improve performance.

When this function is called, the concurrency server first validates the certificate. It confirms that the
certificate’s signature is valid and pulls the installation code and uniqueinstallcode from the certificate.
In order to validate the signature, the server must have the public key for the certificate. This is stored in
the web.config file. For scenarios where you are actually deploying the concurrency server to customer
sites, you should find a more secure mechanism to attach the public key (embed in a custom version of
the application, or license the concurrency server and embed the public key in the certificate for the
concurrency server).

The concurrency server also pulls from the certificate the number of licenses available for this
installation code. The concurrentcy server will always use the number from the latest certificate that it
sees.

Renew
Parameters:

• InstallKey - string

• UniqueInstall – string

• Returns ConcurrencyResults enumeration

This function is used to renew a lease. It must be called before the time specified in LicenseLifetime
parameter of the Allocate function has passed.

In the event that the time expires, or if the server resets for some reason, you’ll get a
LicenseFreeOrRevoked error. You as the developer, have the option as to how you wish to handle this
situation.

Our recommended solution is to call Allocate again to reacquire the lease. The Allocate call can fail if
other applications grab the available leases. In this case it is up to you to decide how to proceed. In the
example we provide, we allow the application to continue to run, but continue to attempt to reacquire the
lease.

Desaware Licensing System: Application Note: #2 Page 6
Implementing Concurrent/Floating Licenses

Release
• InstallKey - string

• UniqueInstall – string

• Returns ConcurrencyResults enumeration

This function is used to release a lease. It should be called when the application terminates.

ConcurrencyResults Enumeration
The ConcurrencyResults enumeration is used to return results from the concurrency server functions.
The possible return values are as follows:

0 – Success Operation succeeded

1 – LicenseCountExceeded There are no more leases available on Allocate

2 – LicenseFreedOrRevoked This is the success result for the Release function. On Renew, this
result indicates that the lease expired before it renewed, or that the
server was reset.

3 – CertificateInvalid On Allocate, the certificate passed as the ‘cert’ property is not valid. It
might be corrupt or invalid XML or a signature verification error.

4 – ServerCryptographyError On Allocate, unable to obtain an RSACryptoServiceProvider on the
server. This represents a server configuration error.

5 – AppNotSupported On Allocate, the application name specified in the certificate does not
have a corresponding public key in the configuration server’s
web.config file.

6 – InvalidKeyForApplication On Allocate, the public key in the web.config file for this application is
not valid.

7 – CertConcurrencyDataError On Allocate, the concurrency fields are missing from the certificate
Server Data, or the server data is missing or has an invalid format.

Configuration
In order to validate certificates, the concurrency server must have the public key for each application
that it supports. This is necessary because, without it, a client could substitute any certificate created
with the licensing system. The public key is stored under appSettings. The key consists of the name of
the application followed by “-pk”. The key can be found in the .resx file for the application and simply
copied from there to the web.config file.

The UnusedInstallKeyHoldTimeMinutes entry instructs the concurrencyserver how long it should keep
the records in memory for a given installation code when it has no leases outstanding.

Sample configuration entries:

<appSettings>

 <add key="UnusedInstallKeyHoldTimeMinutes" value="120"/>

Desaware Licensing System: Application Note: #2 Page 7
Implementing Concurrent/Floating Licenses

 <add key="mytestapp-pk"
value="<RSAKeyValue><Modulus>ssjhpvrNmqWaAoO8MGzpIeTXTUarrmNDT6r+Ywle8n
J2eyDB0eTsHu1ljxamKaG9EP6h3vfJHh1mfSNAgQpKca7DCrn1aqwcNDYnJQUIONKxcbZXmDKBCysFZPA6n
M5cHDhoMcsmrgD4CHmpP++vEMld/ve/uz3uDC1PN320dAs=</Modulus><Exponent>AQAB
</Exponent></RSAKeyValue>"/>

</appSettings>

As mentioned earlier, if you are deploying the certificate server on a customer site, you’ll want this
information stored securely to prevent it from being modified by the customer.

Security Considerations
The following security issues need to be considered both in design and deployment.

Ensuring the Client Reaches the Correct Server
One of the easiest ways to defeat a concurrency licensing scheme is to have different clients connect to
different servers. This implementation addresses this potential vulnerability in a number of ways:

• The concurrency server URL is determined on the DLS server and is embedded into the license
certificate (which is digitally signed to prevent modification).

• By keeping the concurrency server lightweight and allowing multiple concurrency servers to
exist independently (with each key assigned to one server), it is possible and inexpensive for you
to host the concurrency servers rather than host them on the client’s network. This makes it
possible to use SSL to ensure access to the correct server and encrypt the connection.

• Hosting a concurrency server on a end user’s network is possible, but is much less secure
because it is always possible for an end user to redirect from one URL to another without the
client’s knowledge if SSL is not used. Please contact Desaware to discuss possible approaches
for this kind of scenario.

Available License Count
The number of licenses available for each installation code is stored inside of each certificate. This does
mean that with this implementation it is advisable for clients to upgrade their certificates when the
number of licenses available is changed. However, this is not absolutely essential.

Because the concurrency server always uses the information from the certificate with the most recent
signature date, depending on usage patterns, the server will tend to have the correct number of licenses.

If this is a concern, it would not be difficult to change the server to contact the licensing server and
retrieve the license count for an installation code. That change would, however, make it necessary for
the concurrency server to be able to reach the license server – which is not always going to be the case.

The DLSExtensions Component
Application Note #1: Extending the Licensing System, introduced the DLSExtensions component.
Please refer to that application note for an introduction to the component. This section will only
cover changes to the component.

Desaware Licensing System: Application Note: #2 Page 8
Implementing Concurrent/Floating Licenses

The IkeyExtensions table in the database now includes the ConcurrencyServer and ConcurrencyCount
columns that contain the server URL and the number of licenses for the specified installation code. Be
sure to download version 2 of the original application note – it incorporates changes to the table name
and columns.

The IDBLink Interface
The dblink class implements the IDBLink interface that is defined as follows:

Public Interface IDBLink
 Function GetExpirationDate(ByVal InstallationKey As String) As Date
 Sub SetExpirationDate(ByVal InstallationKey As String, ByVal NewDate As Date)
 Function ExtendDemo(ByVal UniqueInstallGUID As String, ByVal NewDate As Date) As String
 Function StripXmlSignature(ByVal xmldocstring As String) As String
 Function GetCurrentDemoExpirationDate(ByVal UniqueInstallGUID As String) As Date
 Sub SetConcurrencyInfo(ByVal InstallationKey As String, ByVal Server As String, ByVal count As Integer)
 Function GetConcurrencyInfo(ByVal InstallationKey As String, ByRef server As String, ByRef count As Integer) As Boolean
End Interface

The SetConcurrencyInfo and GetConcurrencyInfo functions are new for this application note.

These functions are used to set and retrieve the concurrency information in the database for a given
installation key as shown below.

Public Function GetConcurrencyInfo(ByVal InstallationKey As String, ByRef server As String, ByRef count As Integer) As
Boolean Implements IDBLink.GetConcurrencyInfo
 Try
 Dim ds As New DataSet
 ds = GetRowForKey(InstallationKey)
 If ds.Tables(0).Rows.Count = 0 Then Return False ' No expiration
 With ds.Tables(0).Rows(0)
 If IsDBNull(.Item("ConcurrencyServer")) OrElse IsDBNull(.Item("ConcurrencyCount")) Then Return False
 server = CStr(.Item("ConcurrencyServer"))
 count = CInt(.Item("ConcurrencyCount"))
 Return (True)
 End With
 Catch ex As Exception
 Trace.WriteLine("Error in GetConcurrencyInfo: " & ex.Message)
 Throw (ex)
 Finally
 If theconnection.State = ConnectionState.Open Then theconnection.Close()
 End Try

 End Function

Desaware Licensing System: Application Note: #2 Page 9
Implementing Concurrent/Floating Licenses

Public Sub SetConcurrencyInfo(ByVal InstallationKey As String, ByVal Server As String, ByVal count As Integer) Implements
IDBLink.SetConcurrencyInfo
 Try
 Dim ds As New DataSet
 ds = GetRowForKey(InstallationKey)
 Dim therow As DataRow
 If ds.Tables(0).Rows.Count = 0 Then
 therow = ds.Tables(0).NewRow()
 ds.Tables(0).Rows.Add(therow)
 Else
 therow = ds.Tables(0).Rows(0)
 End If
 therow("InstallationCode") = InstallationKey
 therow("ConcurrencyServer") = Server
 therow("ConcurrencyCount") = count
 theadapter.Update(ds)

 Catch ex As Exception
 Trace.WriteLine("Error in SetExpirationDate: " & ex.Message)
 Throw (ex)
 Finally
 If theconnection.State = ConnectionState.Open Then theconnection.Close()
 End Try
 End Sub

The Expirations Example
Application Note #1: Extending the Licensing System, introduced the Expirations example. Please refer
to that application note for an introduction to this example. This section will only cover changes to
the application.

The expirations example has been extended with the new concurrency.aspx page that is used to set and
retrieve the concurrency server and license count for each key. As before, the dlsextmanagement.asmx
web service has been extended to implement the full IDBLink interface with the new
GetConcurrencyInfo and SetConcurrencyInfo methods.

 Protected Sub cmdGetConcurrencyInfo_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles
cmdGetConcurrencyInfo.Click
 Dim m As New dlsextmanagement()
 Try
 If txtKey.Text = "" Then
 lblKeyError.Text = "Invalid key"
 Exit Sub
 End If
 Dim server As String = Nothing, count As Integer
 If Not m.GetConcurrencyInfo(txtKey.Text, server, count) Then
 lblKeyError.Text = "No concurrency info"

Desaware Licensing System: Application Note: #2 Page 10
Implementing Concurrent/Floating Licenses

 Else
 txtServer.Text = server
 txtCount.Text = count.ToString
 End If
 Finally
 m.Dispose()
 End Try

 End Sub

 Protected Sub cmdSetConcurrencyInfo_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles
cmdSetConcurrencyInfo.Click
 Dim m As New dlsextmanagement()
 Try
 If txtKey.Text = "" Then
 lblKeyError.Text = "Invalid key"
 Exit Sub
 End If
 m.SetConcurrencyInfo(txtKey.Text, txtServer.Text, CInt(txtCount.Text))
 Finally
 m.Dispose()
 End Try

 End Sub

The Concurrency Server
The concurrency server is designed to operate on a standalone basis and is designed for high
performance. In particular, the Renew method is expected to be called most often. All lease data is
stored in memory in the application object. The Licenser is the visible web service class and is defined
below. All of its methods are synchronized and thread safe.

Public Class Licenser
 Inherits System.Web.Services.WebService

 ' Allocate's a license
 <WebMethod()> _
 Public Function AllocateLicense(ByVal cert As String, ByVal LicenseLifetime As Integer, ByRef InstallCode As String, _
 ByRef UniqueCode As String) As ConcurrencyResults
 SyncLock Application
 Dim cm As ConcurrencyManager = GetCM()
 'If Not Diagnostics.Debugger.IsAttached Then
 ' Diagnostics.Debugger.Launch()
 ' Diagnostics.Debugger.Break()
 'End If
 Dim cmr As ConcurrencyResults = cm.ParseCertificate(cert, LicenseLifetime, InstallCode, UniqueCode)

Desaware Licensing System: Application Note: #2 Page 11
Implementing Concurrent/Floating Licenses

 If cmr = ConcurrencyResults.Success Then
 Return cm.Allocate(InstallCode, UniqueCode)
 End If
 Return cmr
 End SyncLock

 End Function

 <WebMethod()> _
 Public Function AllocateTest(ByVal LicenseLifetime As Integer, ByRef InstallCode As String, _
 ByRef UniqueCode As String) As ConcurrencyResults
 SyncLock Application
 'Dim cm As ConcurrencyManager = GetCM()
 'Return cm.Allocate(InstallCode, UniqueCode)
 Return ConcurrencyResults.FunctionDisabled
 End SyncLock
 End Function

 <WebMethod()> _
 Public Function Renew(ByVal InstallCode As String, ByVal UniqueInstall As String) As ConcurrencyResults
 SyncLock Application
 Dim cm As ConcurrencyManager = GetCM()
 Return cm.Renew(InstallCode, UniqueInstall)
 End SyncLock

 End Function

 <WebMethod()> _
 Public Function Release(ByVal InstallCode As String, ByVal UniqueInstall As String) As ConcurrencyResults
 SyncLock Application
 Dim cm As ConcurrencyManager = GetCM()
 Return cm.Release(InstallCode, UniqueInstall)
 End SyncLock

 End Function

 Private Function GetCM() As ConcurrencyManager
 Dim cm As ConcurrencyManager = CType(Application.Item("CM"), ConcurrencyManager)
 If cm Is Nothing Then
 cm = New ConcurrencyManager
 Application.Item("CM") = cm
 End If
 Return cm

 End Function

Desaware Licensing System: Application Note: #2 Page 12
Implementing Concurrent/Floating Licenses

End Class

The InstallKeyInfo class

Public Class InstallKeyInfo
 Private m_AllocatedLicenseList As New Dictionary(Of String, Date)
 Private m_MaxCount As Integer = 2
 Private m_LicenseLifetime As Integer = 300 ' Lifetime of each license in seconds
 Private m_KeyInfoCertDate As Date ' Date of certificate that sent MaxCount
 Private m_LastAccessTime As Date ' Date/Time of most recent access to this object

 Public Sub SetKeyInfo(ByVal count As Integer, ByVal lifetime As Integer, ByVal certdate As Date)
 m_MaxCount = count
 m_LicenseLifetime = lifetime
 m_KeyInfoCertDate = certdate
 m_LastAccessTime = Now
 End Sub

 Public Sub New(ByVal count As Integer, ByVal lifetime As Integer, ByVal certdate As Date)
 SetKeyInfo(count, lifetime, certdate)
 m_LastAccessTime = Now
 End Sub

 Public Sub New()
 MyBase.New()
 End Sub

 Public ReadOnly Property KeyInfoCertDate() As Date
 Get
 Return m_KeyInfoCertDate
 End Get
 End Property

 Public ReadOnly Property LicenseAvailable() As Boolean
 Get
 ClearOldLicenses()
 Return m_AllocatedLicenseList.Count < m_MaxCount
 End Get
 End Property

 Friend ReadOnly Property LastAccessTime() As Date
 Get
 Return m_LastAccessTime
 End Get
 End Property

Desaware Licensing System: Application Note: #2 Page 13
Implementing Concurrent/Floating Licenses

 Public Sub AddOrUpdateUnique(ByVal UniqueInstall As String)
 m_LastAccessTime = Now
 m_AllocatedLicenseList.Item(UniqueInstall) = Now
 End Sub

 Public Function Renew(ByVal UniqueInstall As String) As ConcurrencyResults
 m_LastAccessTime = Now
 If m_AllocatedLicenseList.ContainsKey(UniqueInstall) Then
 m_AllocatedLicenseList.Item(UniqueInstall) = Now
 Return ConcurrencyResults.Success
 Else
 Return ConcurrencyResults.LicenseFreedOrRevoked
 End If
 End Function

 Public Sub RemoveUnique(ByVal UniqueInstall As String)
 m_LastAccessTime = Now
 m_AllocatedLicenseList.Remove(UniqueInstall)
 End Sub

 Private Sub ClearOldLicenses()
 Dim current As Integer = 0
 Do Until current >= m_AllocatedLicenseList.Count
 If Now.Subtract(m_AllocatedLicenseList.ElementAt(current).Value).TotalSeconds > m_LicenseLifetime Then
 ConcurrencyManager.Tracer.TraceInformation("Expiring Unique " &
m_AllocatedLicenseList.ElementAt(current).Key)
 m_AllocatedLicenseList.Remove(m_AllocatedLicenseList.ElementAt(current).Key)
 Else
 current += 1
 End If
 Loop
 End Sub

End Class

The InstallKeyInfo object contains information about the leases allocated to a single installation code.

The m_AllocatedLicenseList field contains a dictionary – the keys are the UniqueInstallGUID’s of each
machine that is holding a lease, the value is the most recent renewal time of the lease.

The m_MaxCount field contains the number of leases available.

The m_LicenseLifetime field is the maximum lifetime of each lease.

The m_LastAccessTime object lists the most recent reference to the object. This field is used to expire
the InstallKeyInfo object after sufficient time has passed with no leases outstanding.

Public Class InstallKeyInfo

Desaware Licensing System: Application Note: #2 Page 14
Implementing Concurrent/Floating Licenses

 Private m_AllocatedLicenseList As New Dictionary(Of String, Date)
 Private m_MaxCount As Integer = 2
 Private m_LicenseLifetime As Integer = 300 ' Lifetime of each license in seconds
 Private m_KeyInfoCertDate As Date ' Date of certificate that sent MaxCount
 Private m_LastAccessTime As Date ' Date/Time of most recent access to this object

 Public Sub SetKeyInfo(ByVal count As Integer, ByVal lifetime As Integer, ByVal certdate As Date)
 m_MaxCount = count
 m_LicenseLifetime = lifetime
 m_KeyInfoCertDate = certdate
 m_LastAccessTime = Now
 End Sub

 Public Sub New(ByVal count As Integer, ByVal lifetime As Integer, ByVal certdate As Date)
 SetKeyInfo(count, lifetime, certdate)
 m_LastAccessTime = Now
 End Sub

 Public Sub New()
 MyBase.New()
 End Sub

 Public ReadOnly Property KeyInfoCertDate() As Date
 Get
 Return m_KeyInfoCertDate
 End Get
 End Property

 Public ReadOnly Property LicenseAvailable() As Boolean
 Get
 ClearOldLicenses()
 Return m_AllocatedLicenseList.Count < m_MaxCount
 End Get
 End Property

 Friend ReadOnly Property LastAccessTime() As Date
 Get
 Return m_LastAccessTime
 End Get
 End Property

 Public Sub AddOrUpdateUnique(ByVal UniqueInstall As String)
 m_LastAccessTime = Now
 m_AllocatedLicenseList.Item(UniqueInstall) = Now
 End Sub

 Public Function Renew(ByVal UniqueInstall As String) As ConcurrencyResults

Desaware Licensing System: Application Note: #2 Page 15
Implementing Concurrent/Floating Licenses

 m_LastAccessTime = Now
 If m_AllocatedLicenseList.ContainsKey(UniqueInstall) Then
 m_AllocatedLicenseList.Item(UniqueInstall) = Now
 Return ConcurrencyResults.Success
 Else
 Return ConcurrencyResults.LicenseFreedOrRevoked
 End If
 End Function

 Public Sub RemoveUnique(ByVal UniqueInstall As String)
 m_LastAccessTime = Now
 m_AllocatedLicenseList.Remove(UniqueInstall)
 End Sub

 Private Sub ClearOldLicenses()
 Dim current As Integer = 0
 Do Until current >= m_AllocatedLicenseList.Count
 If Now.Subtract(m_AllocatedLicenseList.ElementAt(current).Value).TotalSeconds > m_LicenseLifetime Then
 ConcurrencyManager.Tracer.TraceInformation("Expiring Unique " & _
 m_AllocatedLicenseList.ElementAt(current).Key)
 m_AllocatedLicenseList.Remove(m_AllocatedLicenseList.ElementAt(current).Key)
 Else
 current += 1
 End If
 Loop
 End Sub

End Class

The ConcurrencyManager class does the bulk of the work and contains methods that are called from the
Licenser class.

The Allocate method first checks to see if an InstallKeyInfo object exists for the current installation
code. If it does, and a license is available, the lease is granted. If the object does not exist, a new one is
created and the lease granted.

Public Class ConcurrencyManager

 ' The m_AllocatedLicense list includes a list of installation keys
 ' The entry for each key is a list of unique installs of allocated licenses
 ' Each allocated license has a date - when it was last renewed
 Private m_AllocatedLicense As New Dictionary(Of String, InstallKeyInfo)
 Public Shared Tracer As New Diagnostics.TraceSource("ConcurrencyManagerTrace")

 Friend Function Allocate(ByVal Installkey As String, ByVal UniqueInstall As String) As ConcurrencyResults
 ' Grab the list for the existing key

Desaware Licensing System: Application Note: #2 Page 16
Implementing Concurrent/Floating Licenses

 Dim keyinfo As InstallKeyInfo = Nothing
 SyncLock m_AllocatedLicense
 If m_AllocatedLicense.TryGetValue(Installkey, keyinfo) Then
 ' Install key already exists
 If Not keyinfo.LicenseAvailable Then
 Tracer.TraceInformation("License count exceeded key=" & Installkey & " unique=" & UniqueInstall)
 Return ConcurrencyResults.LicenseCountExceeded
 End If
 keyinfo.AddOrUpdateUnique(UniqueInstall)
 Tracer.TraceInformation("License granted key=" & Installkey & " unique=" & UniqueInstall)
 Else
 ' It's a new one - up to the caller to reset default values
 keyinfo = New InstallKeyInfo()
 keyinfo.AddOrUpdateUnique(UniqueInstall)
 m_AllocatedLicense.Add(Installkey, keyinfo)
 Tracer.TraceInformation("License granted key=" & Installkey & " unique=" & UniqueInstall)
 End If
 End SyncLock

 Return ConcurrencyResults.Success

 End Function

The renewal is a fast operation. If no InstallKeyInfo object is found for the current installation code, the
lease is revoked or not granted. Otherwise the InstallKeyInfo function is called to renew the lease.
Renewing the lease also updates the most recent access time.

 Public Function Renew(ByVal InstallKey As String, ByVal UniqueInstall As String) As ConcurrencyResults
 ' Grab the list for the existing key
 Dim keyinfo As InstallKeyInfo = Nothing
 ' If license can't be renewed, it means it was timed out, or the application cycled
 ' This is a signal from the client app to reacquire a license
 SyncLock m_AllocatedLicense
 If Not m_AllocatedLicense.TryGetValue(InstallKey, keyinfo) Then
 Tracer.TraceInformation("License revoked key=" & InstallKey & " unique=" & UniqueInstall)
 Return ConcurrencyResults.LicenseFreedOrRevoked
 End If
 Dim results As ConcurrencyResults
 results = keyinfo.Renew(UniqueInstall)
 Tracer.TraceInformation("License renewed key=" & InstallKey & " unique=" & UniqueInstall & " status: " _
 & results.ToString)
 Return results
 End SyncLock

 End Function

Desaware Licensing System: Application Note: #2 Page 17
Implementing Concurrent/Floating Licenses

 Public Function Release(ByVal InstallKey As String, ByVal UniqueInstall As String) As ConcurrencyResults
 ' Grab the list for the existing key
 Dim keyinfo As InstallKeyInfo = Nothing
 ' If license can't be renewed, it means it was timed out, or the application cycled
 ' This is a signal from the client app to reacquire a license
 SyncLock m_AllocatedLicense
 If Not m_AllocatedLicense.TryGetValue(InstallKey, keyinfo) Then
 Tracer.TraceInformation("License revoked key=" & InstallKey & " unique=" & UniqueInstall)
 Return ConcurrencyResults.LicenseFreedOrRevoked
 End If
 Tracer.TraceInformation("License released key=" & InstallKey & " unique=" & UniqueInstall)
 keyinfo.RemoveUnique(UniqueInstall)
 End SyncLock
 Return ConcurrencyResults.LicenseFreedOrRevoked
 End Function

 ' Sets concurrency info for an installation key
 ' Only updates if info is newer
 Friend Sub SetConcurrencyInfo(ByVal Installkey As String, ByVal MaxCount As Integer, ByVal LicenseTime As Integer,
ByVal InfoDate As Date)
 Dim keyinfo As InstallKeyInfo = Nothing
 If m_AllocatedLicense.TryGetValue(Installkey, keyinfo) Then
 ' Found one
 If InfoDate > keyinfo.KeyInfoCertDate Then
 ' This cert has a later date than the existing one
 Tracer.TraceInformation("Updating concurrency info. MaxCount=" & MaxCount.ToString & " LicenseTime=" &
LicenseTime.ToString & " InfoDate=" & InfoDate.ToShortDateString)
 keyinfo.SetKeyInfo(MaxCount, LicenseTime, InfoDate)
 End If
 Else
 ' It's a new one
 Tracer.TraceInformation("Setting new concurrency info. MaxCount=" & MaxCount.ToString & _
 " LicenseTime=" & LicenseTime.ToString & " InfoDate=" & InfoDate.ToShortDateString)
 keyinfo = New InstallKeyInfo(MaxCount, LicenseTime, InfoDate)
 m_AllocatedLicense.Add(Installkey, keyinfo)
 End If
 FlushUnusedCachedKeys()
 End Sub

The FlushUnusedCachedKeys function looks for any InstallKeyInfo functions that have had no leases
for longer than the time set in the UnusedInstallKeyHoldTimeMinutes setting in the web.config file.

 Friend Sub FlushUnusedCachedKeys()
 Static expiredminutes As Integer = CInt(ConfigurationManager.AppSettings.Item("UnusedInstallKeyHoldTimeMinutes"))
 Dim current As Integer = 0
 Do Until current >= m_AllocatedLicense.Count
 If Now.Subtract(m_AllocatedLicense.ElementAt(current).Value.LastAccessTime).TotalMinutes > expiredminutes Then

Desaware Licensing System: Application Note: #2 Page 18
Implementing Concurrent/Floating Licenses

 Tracer.TraceInformation("Flushing unused key: " & m_AllocatedLicense.ElementAt(current).Key)
 m_AllocatedLicense.Remove(m_AllocatedLicense.ElementAt(current).Key)
 Else
 current += 1
 End If
 Loop
 End Sub

The ParseCertificate function is called during allocation to validate the incoming certificate and extract
from it the Installation code and the UniqueInstallGUID.

 Friend Function ParseCertificate(ByVal certificate As String, ByVal LicenseLifetime As Integer, ByRef InstallCode As String,
ByRef UniqueCode As String) As ConcurrencyResults
 Dim xdoc As New XmlDocument
 Try
 xdoc.PreserveWhitespace = False
 xdoc.LoadXml(certificate)
 Catch ex As Exception
 Return ConcurrencyResults.CertificateInvalid
 End Try
 ' Now validate the certificate
 ' Find the application name
 Dim appname As String
 Try
 appname = xdoc.SelectSingleNode("//Application/Name").FirstChild.Value
 Catch ex As Exception
 Return ConcurrencyResults.CertificateInvalid
 End Try

 ' Get the key
 Dim pkxml As String
 Try
 pkxml = ConfigurationManager.AppSettings.Item(appname & "-pk")
 Catch ex As Exception
 Return ConcurrencyResults.AppNotSupported
 End Try

 Dim rsakey As RSACryptoServiceProvider
 Dim params As New CspParameters
 params.Flags = CspProviderFlags.NoPrompt
 Try
 rsakey = New RSACryptoServiceProvider(1024, params)
 Catch ex As Exception
 Try
 params.Flags = params.Flags Or CspProviderFlags.UseMachineKeyStore
 rsakey = New RSACryptoServiceProvider(1024, params)
 Catch ex2 As Exception

Desaware Licensing System: Application Note: #2 Page 19
Implementing Concurrent/Floating Licenses

 Return ConcurrencyResults.ServerCryptographyError
 End Try

 End Try

 ' Load the key
 Try
 rsakey.FromXmlString(pkxml)
 Catch ex As Exception
 rsakey.Clear()
 Return ConcurrencyResults.InvalidKeyForApplication
 End Try

 ' Now validate
 Dim XmlSignHolder As SignedXml
 Dim sig As XmlElement

 Try
 sig = CType(xdoc.GetElementsByTagName("Signature").Item(0), XmlElement)
 If sig Is Nothing Then Return ConcurrencyResults.CertificateInvalid
 XmlSignHolder = New SignedXml(xdoc)
 XmlSignHolder.LoadXml(sig)

 If Not XmlSignHolder.CheckSignature(rsakey) Then
 Return ConcurrencyResults.CertificateInvalid
 End If
 Catch ex2 As CryptographicException
 Return ConcurrencyResults.CertificateInvalid
 Finally
 rsakey.Clear()
 End Try

 ' Now pull the hashtable
 Try
 Dim sv As String = xdoc.GetElementsByTagName("ServerData").Item(0).FirstChild.Value
 Dim b As Byte() = Convert.FromBase64String(sv)
 Dim ms As New IO.MemoryStream(b)
 Dim serverdata As IDictionary = Desaware.DLSextensions.DictionarySerializer.Deserialize(ms)
 InstallCode = CStr(serverdata.Item("InstallationCode"))
 SetConcurrencyInfo(InstallCode, CInt(serverdata.Item("ConcurrencyCount")), LicenseLifetime, _
 CDate(serverdata.Item("ConcurrencyDate")))
 UniqueCode = xdoc.SelectSingleNode("//UniqueInstallation/GUID").FirstChild.Value
 Catch ex As Exception
 Return ConcurrencyResults.CertConcurrencyDataError
 End Try

Desaware Licensing System: Application Note: #2 Page 20
Implementing Concurrent/Floating Licenses

 End Function

End Class

Concurrency on the Client
Application Note #1: Extending the Licensing System, introduced a modified version of the
HighSecurity example that includes software subscription features. Please refer to that application
note for an introduction to this example. This section will only cover changes to the application.

The HighSecurity example that comes with this application note includes the features of Application
Note #1 (subscription implementation) as well as concurrency support.

To test the functionality, first navigate to the http://localhost/{your virtual
directory}/expirations/dlsextedefault.aspx page and the concurrency.aspx pages. Set the expiration value
and concurrency information for the installation code you wish to use. You may want to create several
client installations in order to test the concurrency – you can use virtual machines to accomplish this.

The server data is extracted from the certificate using the ParseServerData function. This function uses
the DictionarySerializer class (described in application note #1) to deserialize the HashTable object.

 Public Shared Function ParseServerData(ByVal xdoc As Xml.XmlDocument) As IDictionary
 Dim sv As String = xdoc.GetElementsByTagName("ServerData").Item(0).FirstChild.Value
 Dim b As Byte() = Convert.FromBase64String(sv)
 Dim ms As New IO.MemoryStream(b)
 Dim serverdata As IDictionary = Desaware.DLSextensions.DictionarySerializer.Deserialize(ms)
 Return serverdata
 End Function

The concurrency test is done during the Form load event using the AllocateLicense method of the
concurrency server. If a lease is acquired, the application is licensed and a renewal timer is enabled. This
application uses a 60 second lease time. The timer polls every 10 seconds, which virtually guarantees a
the lease will be renewed well before it expires.

 If ServerData.Contains("ConcurrencyServer") Then ' Concurrency is active
 concurrencyserver = New concurrencymanager.Licenser()
 concurrencyserver.Url = CStr(ServerData.Item("ConcurrencyServer"))
 Dim lease As concurrencymanager.ConcurrencyResults = _
 concurrencyserver.AllocateLicense(ClientLicense1.Certificate.OuterXml, 60, _
 m_icode, m_ucode)
 If lease = concurrencymanager.ConcurrencyResults.Success Then
 lblLicensed.Text = "Application is licensed - lease acquired"
 LicenseTimer.Enabled = True
 Else
 lblLicensed.Text = "Lease not acquired: " & lease.ToString

Desaware Licensing System: Application Note: #2 Page 21
Implementing Concurrent/Floating Licenses

 End If
 End If

Every ten seconds the timer renews the lease. If the lease has been revoked, an attempt is made to
reacquire the lease. You as the developer, have the option as to how you wish to handle this situation.

 Private Sub LicenseTimer_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
LicenseTimer.Tick
 Static intick As Boolean
 If intick Then Exit Sub
 intick = True
 Try
 Dim result As concurrencymanager.ConcurrencyResults = concurrencyserver.Renew(m_icode, m_ucode)
 If result <> concurrencymanager.ConcurrencyResults.Success Then
 ' Try to reacquire
 ' We reacquire because it's possible for a server to do a restart
 Dim newresult As concurrencymanager.ConcurrencyResults = _
 concurrencyserver.AllocateLicense(ClientLicense1.Certificate.OuterXml, 60, m_icode, m_ucode)
 If newresult <> concurrencymanager.ConcurrencyResults.Success Then
 If lblLicensed.Text <> "License lease lost" Then
 MsgBox("License lease lost: " & newresult.ToString)
 lblLicensed.Text = "License lease lost"
 End If
 ' What would you like to do here?
 Else
 lblLicensed.Text = "Application is licensed - lease acquired"
 End If
 Exit Sub
 End If
 Catch ex As Exception
 ' What would you like to do here?
 Finally
 intick = False
 End Try
 End Sub

Conclusion
In an actual deployment, it is likely that you would use the web service interface of the expirations
application to automate the process of assigning concurrency information to keys as they are created. A
single application could access both this web service and the regular management interface to implement
a key management system, or this functionality can be integrated into your existing line of business or
customer management system.

	Introduction
	Sample Installation

	Concurrent Licensing Server Design
	A Central Concurrency Server
	A Leasing System
	Server Hosting and Communication
	The Concurrency Server Methods and Operation
	AllocateLicense
	Renew
	Release

	ConcurrencyResults Enumeration
	Configuration
	Security Considerations
	Ensuring the Client Reaches the Correct Server
	Available License Count

	The DLSExtensions Component
	The IDBLink Interface

	The Expirations Example
	The Concurrency Server
	Concurrency on the Client
	Conclusion

